Abels, Helmut ; Terasawa, Yutaka
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Discrete and Continuous Dynamical Systems - S |
---|
Verlag: | AMER INST MATHEMATICAL SCIENCES-AIMS |
---|
Ort der Veröffentlichung: | SPRINGFIELD |
---|
Band: | 15 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 8 |
---|
Seitenbereich: | S. 1871 |
---|
Datum: | 2022 |
---|
Institutionen: | Mathematik > Prof. Dr. Helmut Abels |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.3934/dcdss.2022117 | DOI |
|
---|
Stichwörter / Keywords: | CAHN-HILLIARD EQUATION; INCOMPRESSIBLE FLUIDS; WEAK SOLUTIONS; EXISTENCE; Two-phase flow; Navier-Stokes equation; diffuse interface model; mix-tures of viscous fluids; Cahn-Hilliard equation; non-local operators |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 57045 |
---|
Zusammenfassung
We prove convergence of suitable subsequences of weak solutions of a diffuse interface model for the two-phase flow of incompressible fluids with different densities with a nonlocal Cahn-Hilliard equation to weak solutions of the corresponding system with a standard ???local??? Cahn-Hilliard equation. The analysis is done in the case of a sufficiently smooth bounded domain with no-slip boundary ...
Zusammenfassung
We prove convergence of suitable subsequences of weak solutions of a diffuse interface model for the two-phase flow of incompressible fluids with different densities with a nonlocal Cahn-Hilliard equation to weak solutions of the corresponding system with a standard ???local??? Cahn-Hilliard equation. The analysis is done in the case of a sufficiently smooth bounded domain with no-slip boundary condition for the velocity and Neumann boundary conditions for the Cahn-Hilliard equation. The proof is based on the corresponding result in the case of a single Cahn-Hilliard equation and compactness arguments used in the proof of existence of weak solutions for the diffuse interface model.