Gupta, Rahul ; Krishna, Amalendu
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Journal of Algebra |
|---|
| Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
|---|
| Ort der Veröffentlichung: | SAN DIEGO |
|---|
| Band: | 608 |
|---|
| Seitenbereich: | S. 487-552 |
|---|
| Datum: | 2022 |
|---|
| Institutionen: | Mathematik |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1016/j.jalgebra.2022.06.004 | DOI |
|
|---|
| Stichwörter / Keywords: | MILNOR K-THEORY; RAMIFICATION; 0-CYCLES; RINGS; Milnor K-groups; Class field theory |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 57188 |
|---|
Zusammenfassung
We introduce an etale fundamental group with modulus and construct a reciprocity homomorphism from the Kato-Saito idele class group with modulus to this fundamental group. This is the K-theoretic analogue of the reciprocity for the cycle-theoretic idele class group with modulus due to Kerz-Saito. It plays a central role in showing the isomorphism between the two idele class groups and in proving ...
Zusammenfassung
We introduce an etale fundamental group with modulus and construct a reciprocity homomorphism from the Kato-Saito idele class group with modulus to this fundamental group. This is the K-theoretic analogue of the reciprocity for the cycle-theoretic idele class group with modulus due to Kerz-Saito. It plays a central role in showing the isomorphism between the two idele class groups and in proving Bloch's formula for the Chow group of 0-cycles with modulus.(c) 2022 Elsevier Inc. All rights reserved.