Gupta, Rahul ; Krishna, Amalendu
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Algebra |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 608 |
---|
Seitenbereich: | S. 487-552 |
---|
Datum: | 2022 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.jalgebra.2022.06.004 | DOI |
|
---|
Stichwörter / Keywords: | MILNOR K-THEORY; RAMIFICATION; 0-CYCLES; RINGS; Milnor K-groups; Class field theory |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 57188 |
---|
Zusammenfassung
We introduce an etale fundamental group with modulus and construct a reciprocity homomorphism from the Kato-Saito idele class group with modulus to this fundamental group. This is the K-theoretic analogue of the reciprocity for the cycle-theoretic idele class group with modulus due to Kerz-Saito. It plays a central role in showing the isomorphism between the two idele class groups and in proving ...
Zusammenfassung
We introduce an etale fundamental group with modulus and construct a reciprocity homomorphism from the Kato-Saito idele class group with modulus to this fundamental group. This is the K-theoretic analogue of the reciprocity for the cycle-theoretic idele class group with modulus due to Kerz-Saito. It plays a central role in showing the isomorphism between the two idele class groups and in proving Bloch's formula for the Chow group of 0-cycles with modulus.(c) 2022 Elsevier Inc. All rights reserved.