Wu, Si-Si ; Huang, Teng-Xiang ; Xu, Xiaolan ; Bao, Yi-Fan ; Pei, Xin-Di ; Yao, Xu ; Cao, Mao-Feng ; Lin, Kai-Qiang ; Wang, Xiang ; Wang, Dongdong ; Ren, Bin
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | ACS Nano |
---|
Verlag: | AMER CHEMICAL SOC |
---|
Ort der Veröffentlichung: | WASHINGTON |
---|
Band: | 16 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
---|
Seitenbereich: | S. 4786-4794 |
---|
Datum: | 2022 |
---|
Institutionen: | Physik > Institut für Experimentelle und Angewandte Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1021/acsnano.2c00096 | DOI |
|
---|
Stichwörter / Keywords: | SINGLE-LAYER MOS2; HYDROGEN EVOLUTION; CATALYTIC-ACTIVITY; MONOLAYER MOS2; PHOTOLUMINESCENCE; BILAYER; STATES; TIP; transition-metal dichalcogenides; tip-enhanced photoluminescence; defects; exciton; doping; strain |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 57528 |
---|
Web of Science
Zusammenfassung
Defects can locally tailor the electronic properties of 2D materials, including the band gap and electron density, and possess the merit for optical and electronic applications. However, it is still a great challenge to realize rational defect engineering, which requires quantitative study of the effect of defects on electronic properties under ambient conditions. In this work, we employed ...
Zusammenfassung
Defects can locally tailor the electronic properties of 2D materials, including the band gap and electron density, and possess the merit for optical and electronic applications. However, it is still a great challenge to realize rational defect engineering, which requires quantitative study of the effect of defects on electronic properties under ambient conditions. In this work, we employed tip-enhanced photoluminescence (TEPL) spectroscopy to obtain the PL spectra of different defects (wrinkle and edge) in mechanically exfoliated thin-layer transition metal dichalcogenides (TMDCs) with nanometer spatial resolution. We quantitatively obtained the band gap and electron density at defects by analyzing the wavelength and intensity ratio of excitons and trions. We further visualized the strain distribution across a wrinkle and the edge-induced reconstructive regions of the band gap and electron density by TEPL line scans. The doping effect on the Fermi level and optical performance was unveiled through comparative studies of edges on TMDC monolayers of different doping types. These quantitative results are vital to guide defect engineering and design and fabrication of TMDC-based optoelectronics devices.