Mahanta, Snigdhayan
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Advances in Mathematics |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 285 |
---|
Seitenbereich: | S. 72-100 |
---|
Datum: | 2015 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.aim.2015.07.029 | DOI |
|
---|
Stichwörter / Keywords: | K-THEORY; THEOREM; HOMOTOPY; ALGEBRA; ORDER; Noncommutative spectra; Stable infinity-categories; Triangulated categories; Bootstrap categories; (Co)localizations; C-*-algebras; Bivariant K-theory |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 59941 |
---|
Zusammenfassung
We construct a compactly generated and closed symmetric monoidal stable infinity-category NSp' and show that hNSp'(op) contains the suspension stable homotopy category of separable C*-algebras Sigma Ho-C* constructed by Cuntz-Meyer-Rosenberg as a fully faithful triangulated subcategory. Then we construct two colocalizations of NSp', namely, NSp'[K-1] and NSp'[Z(-1)], both of which are shown to be ...
Zusammenfassung
We construct a compactly generated and closed symmetric monoidal stable infinity-category NSp' and show that hNSp'(op) contains the suspension stable homotopy category of separable C*-algebras Sigma Ho-C* constructed by Cuntz-Meyer-Rosenberg as a fully faithful triangulated subcategory. Then we construct two colocalizations of NSp', namely, NSp'[K-1] and NSp'[Z(-1)], both of which are shown to be compactly generated and closed symmetric monoidal. We prove that Kasparov KK-category of separable C*-algebras sits inside the homotopy category of KK infinity := NSp'[K-1](op) as a fully faithful triangulated subcategory. Hence KK infinity should be viewed as the stable infinity-categorical incarnation of Kasparov KK-category for arbitrary pointed noncommutative spaces (including non separable C*-algebras). As an application we find that the bootstrap category in hNSp'[K-1] admits a completely algebraic description. We also construct a K-theoretic bootstrap category in hKK(infinity) that extends the construction of the UCT class by Rosenberg-Schochet. Motivated by the algebraization problem we finally analyze a couple of equivalence relations on separable C*-algebras that are introduced via the bootstrap categories in various colocalizations of NSp'. (C) 2015 Elsevier Inc. All rights reserved.