Zusammenfassung
The hammock localization provides a model for a homotopy function complex in any Quillen model category. We prove that a homotopy between a pair of morphisms induces a homotopy between the maps induced by taking the hammock localization. We also show that, under Vopenka's principle, every homotopy idempotent functor in a cofibrantly generated model category is determined by simplicial ...
Zusammenfassung
The hammock localization provides a model for a homotopy function complex in any Quillen model category. We prove that a homotopy between a pair of morphisms induces a homotopy between the maps induced by taking the hammock localization. We also show that, under Vopenka's principle, every homotopy idempotent functor in a cofibrantly generated model category is determined by simplicial orthogonality with respect to a set of morphisms. Finally, we give a new proof of the fact that left Bousfield localizations with respect to a class of morphisms always exist in any left proper combinatorial model category under Vopenka's principle.