Blank, Matthias ; Diana, Francesca
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Algebraic & Geometric Topology |
---|
Verlag: | GEOMETRY & TOPOLOGY PUBLICATIONS |
---|
Ort der Veröffentlichung: | COVENTRY |
---|
Band: | 15 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Seitenbereich: | S. 467-492 |
---|
Datum: | 2015 |
---|
Institutionen: | Mathematik > Prof. Dr. Clara Löh |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.2140/agt.2015.15.467 | DOI |
|
---|
Stichwörter / Keywords: | BILIPSCHITZ EQUIVALENCE; MACROSCOPIC DIMENSION; ESSENTIAL MANIFOLDS; INVARIANT-MEANS; AMENABILITY; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 60798 |
---|
Zusammenfassung
Uniformly finite homology is a coarse invariant for metric spaces; in particular, it is a quasi-isometry invariant for finitely generated groups. In this article, we study uniformly finite homology of finitely generated amenable groups and prove that it is infinite-dimensional in many cases. The main idea is to use different transfer maps to distinguish between classes in uniformly finite ...
Zusammenfassung
Uniformly finite homology is a coarse invariant for metric spaces; in particular, it is a quasi-isometry invariant for finitely generated groups. In this article, we study uniformly finite homology of finitely generated amenable groups and prove that it is infinite-dimensional in many cases. The main idea is to use different transfer maps to distinguish between classes in uniformly finite homology. Furthermore we show that there are infinitely many classes in degree zero that cannot be detected by means.