Zusammenfassung
Using rimonabant, a potent inverse agonist for cannabinoid receptor type 1 (CB1R), as parent ligand, a series of novel univalent and bivalent ligands were designed by variation of spacer length and its chemical structure. The ligands synthesized were evaluated for affinity and selectivity by radioligand displacement and a functional steady-state GTPase assay. The results showed the nature of the ...
Zusammenfassung
Using rimonabant, a potent inverse agonist for cannabinoid receptor type 1 (CB1R), as parent ligand, a series of novel univalent and bivalent ligands were designed by variation of spacer length and its chemical structure. The ligands synthesized were evaluated for affinity and selectivity by radioligand displacement and a functional steady-state GTPase assay. The results showed the nature of the spacer influences the biological readout. Albeit all compounds show significantly lower affinities than rimonabant, this fact could be used to demonstrate that affinities and selectivity are influenced by the chemical structure and length of the spacer and might be helpful for designing bivalent probes for other GPCR receptors. (C) 2014 Elsevier Ltd. All rights reserved.