Zusammenfassung
A Gd-III-based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9x1.2nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water ...
Zusammenfassung
A Gd-III-based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9x1.2nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12wt%) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release.