Hellus, Michael ; Schenzel, Peter
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Journal of Algebra |
|---|
| Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
|---|
| Ort der Veröffentlichung: | SAN DIEGO |
|---|
| Band: | 401 |
|---|
| Seitenbereich: | S. 48-61 |
|---|
| Datum: | 2014 |
|---|
| Institutionen: | Mathematik |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1016/j.jalgebra.2013.12.006 | DOI |
|
|---|
| Stichwörter / Keywords: | MODULES; Local cohomology; Complete intersections; Cohomological dimension |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 61719 |
|---|
Zusammenfassung
We provide a formula (see Theorem 1.5) for the Matlis dual of the injective hull of R/p where p is a one dimensional prime ideal in a local complete Gorenstein domain (R, m). This is related to results of Enochs and Xu (see [4] and [5]). We prove a certain 'dual' version of the Hartshorne-Lichtenbaum vanishing (see Theorem 2.2). We prove a generalization of local duality to cohomologically ...
Zusammenfassung
We provide a formula (see Theorem 1.5) for the Matlis dual of the injective hull of R/p where p is a one dimensional prime ideal in a local complete Gorenstein domain (R, m). This is related to results of Enochs and Xu (see [4] and [5]). We prove a certain 'dual' version of the Hartshorne-Lichtenbaum vanishing (see Theorem 2.2). We prove a generalization of local duality to cohomologically complete intersection ideals I in the sense that for I = m we get back the classical Local Duality Theorem. We determine the exact class of modules to which a characterization of cohomologically complete intersection from [7] generalizes naturally (see Theorem 4.4). (C) 2013 Elsevier Inc. All rights reserved.