Abels, Helmut ; Dolzmann, Georg ; Liu, YuNing
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | SIAM Journal on Mathematical Analysis |
---|
Verlag: | SIAM PUBLICATIONS |
---|
Ort der Veröffentlichung: | PHILADELPHIA |
---|
Band: | 46 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 4 |
---|
Seitenbereich: | S. 3050-3077 |
---|
Datum: | 2014 |
---|
Institutionen: | Mathematik > Prof. Dr. Helmut Abels |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1137/130945405 | DOI |
|
---|
Stichwörter / Keywords: | ; Beris-Edwards model; liquid crystals; Navier-Stokes equations; Q-tensor; strong-in-time solutions |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 61845 |
---|
Zusammenfassung
We prove short-time well-posedness and existence of global weak solutions of the Beris-Edwards model for nematic liquid crystals in the case of a bounded domain with inhomogeneous mixed Dirichlet and Neumann boundary conditions. The system consists of the Navier-Stokes equations coupled with an evolution equation for the Q-tensor. The solutions possess higher regularity in time of order one ...
Zusammenfassung
We prove short-time well-posedness and existence of global weak solutions of the Beris-Edwards model for nematic liquid crystals in the case of a bounded domain with inhomogeneous mixed Dirichlet and Neumann boundary conditions. The system consists of the Navier-Stokes equations coupled with an evolution equation for the Q-tensor. The solutions possess higher regularity in time of order one compared to the class of weak solutions with finite energy. This regularity is enough to obtain Lipschitz continuity of the nonlinear terms in the corresponding function spaces. Therefore the well-posedness is shown with the aid of the contraction mapping principle using that the linearized system is an isomorphism between the associated function spaces.