Ammann, Bernd ; Dahl, Mattias ; Humbert, Emmanuel
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Communications in Analysis and Geometry |
|---|
| Verlag: | INT PRESS BOSTON, INC |
|---|
| Ort der Veröffentlichung: | SOMERVILLE |
|---|
| Band: | 21 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 5 |
|---|
| Seitenbereich: | S. 891-916 |
|---|
| Datum: | 2013 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Bernd Ammann |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.4310/CAG.2013.v21.n5.a2 | DOI |
|
|---|
| Stichwörter / Keywords: | SCALAR CURVATURE; SPIN COBORDISM; MANIFOLDS; INVARIANT; SURGERY; |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 61997 |
|---|
Zusammenfassung
We show that solutions of the Yamabe equation on certain n-dimensional non-compact Riemannian manifolds, which are bounded and L-p for p = 2n/(n -2) are also L-2. This L-p-L-2 implication provides explicit constants in the surgery-monotonicity formula for the smooth Yamabe invariant in our paper [4]. As an application we see that the smooth Yamabe invariant of any two-connected compact ...
Zusammenfassung
We show that solutions of the Yamabe equation on certain n-dimensional non-compact Riemannian manifolds, which are bounded and L-p for p = 2n/(n -2) are also L-2. This L-p-L-2 implication provides explicit constants in the surgery-monotonicity formula for the smooth Yamabe invariant in our paper [4]. As an application we see that the smooth Yamabe invariant of any two-connected compact seven-dimensional manifold is at least 74.5. Similar conclusions follow in dimension 8 and in dimensions >= 11.