Ammann, Bernd ; Dahl, Mattias ; Humbert, Emmanuel
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Communications in Analysis and Geometry |
---|
Verlag: | INT PRESS BOSTON, INC |
---|
Ort der Veröffentlichung: | SOMERVILLE |
---|
Band: | 21 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 5 |
---|
Seitenbereich: | S. 891-916 |
---|
Datum: | 2013 |
---|
Institutionen: | Mathematik > Prof. Dr. Bernd Ammann |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.4310/CAG.2013.v21.n5.a2 | DOI |
|
---|
Stichwörter / Keywords: | SCALAR CURVATURE; SPIN COBORDISM; MANIFOLDS; INVARIANT; SURGERY; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 61997 |
---|
Zusammenfassung
We show that solutions of the Yamabe equation on certain n-dimensional non-compact Riemannian manifolds, which are bounded and L-p for p = 2n/(n -2) are also L-2. This L-p-L-2 implication provides explicit constants in the surgery-monotonicity formula for the smooth Yamabe invariant in our paper [4]. As an application we see that the smooth Yamabe invariant of any two-connected compact ...
Zusammenfassung
We show that solutions of the Yamabe equation on certain n-dimensional non-compact Riemannian manifolds, which are bounded and L-p for p = 2n/(n -2) are also L-2. This L-p-L-2 implication provides explicit constants in the surgery-monotonicity formula for the smooth Yamabe invariant in our paper [4]. As an application we see that the smooth Yamabe invariant of any two-connected compact seven-dimensional manifold is at least 74.5. Similar conclusions follow in dimension 8 and in dimensions >= 11.