Blank, L. ; Garcke, H.
; Sarbu, L. ; Styles, V.
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | IMA Journal of Numerical Analysis |
|---|
| Verlag: | OXFORD UNIV PRESS |
|---|
| Ort der Veröffentlichung: | OXFORD |
|---|
| Band: | 33 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 4 |
|---|
| Seitenbereich: | S. 1126-1155 |
|---|
| Datum: | 2013 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Harald Garcke |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1093/imanum/drs039 | DOI |
|
|---|
| Stichwörter / Keywords: | FINITE-ELEMENT APPROXIMATION; PHASE-FIELD MODEL; NUMERICAL SIMULATIONS; IMAGE SEGMENTATION; BOUNDARY MOTION; NEWTON METHOD; EQUATION; CONSTRAINTS; INEQUALITY; SEPARATION; Allen-Cahn systems; nonlocal constraints; variational inequality; vector-valued obstacle problems; primal-dual active set method; semismooth Newton method |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 62235 |
|---|
Zusammenfassung
We show the existence and uniqueness of a solution for the nonlocal vector-valued Allen-Cahn variational inequality in a formulation involving Lagrange multipliers for local and nonlocal constraints. Furthermore, we propose and analyse a primal-dual active set (PDAS) method for local and nonlocal vector-valued Allen-Cahn variational inequalities. The local convergence behaviour of the PDAS ...
Zusammenfassung
We show the existence and uniqueness of a solution for the nonlocal vector-valued Allen-Cahn variational inequality in a formulation involving Lagrange multipliers for local and nonlocal constraints. Furthermore, we propose and analyse a primal-dual active set (PDAS) method for local and nonlocal vector-valued Allen-Cahn variational inequalities. The local convergence behaviour of the PDAS algorithm is studied by interpreting the approach as a semismooth Newton method and numerical simulations are presented demonstrating its efficiency.