Startseite UR

Scalar conservation laws on constant and time-dependent Riemannian manifolds

Lengeler, Daniel ; Müller, Thomas



Zusammenfassung

In this paper we establish well-posedness for scalar conservation laws on closed manifolds M endowed with a constant or a time-dependent Riemannian metric for initial values in L-infinity(M). In particular we show the existence and uniqueness of entropy solutions as well as the L-1 contraction property and a comparison principle for these solutions. Throughout the paper the flux function is ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner