Blank, Luise ; Sarbu, Lavinia ; Stoll, Martin
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Computational Physics |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 231 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 16 |
---|
Seitenbereich: | S. 5406-5420 |
---|
Datum: | 2012 |
---|
Institutionen: | Mathematik > Prof. Dr. Luise Blank |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.jcp.2012.04.035 | DOI |
|
---|
Stichwörter / Keywords: | ACTIVE-SET METHOD; MONOTONE MULTIGRID METHODS; SADDLE-POINT PROBLEMS; INDEFINITE SYSTEMS; LINEAR-SYSTEMS; OPTIMIZATION; EQUATIONS; SEGMENTATION; SIMULATIONS; ALGORITHM; PDE-constrained optimization; Allen-Cahn model; Newton method; Saddle point systems; Preconditioning; Krylov subspace solver |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 63647 |
---|
Zusammenfassung
The solution of Allen-Cahn variational inequalities with mass constraints is of interest in many applications. This problem can be solved both in its scalar and vector-valued form as a PDE-constrained optimization problem by means of a primal-dual active set method. At the heart of this method lies the solution of linear systems in saddle point form. In this paper we propose the use of ...
Zusammenfassung
The solution of Allen-Cahn variational inequalities with mass constraints is of interest in many applications. This problem can be solved both in its scalar and vector-valued form as a PDE-constrained optimization problem by means of a primal-dual active set method. At the heart of this method lies the solution of linear systems in saddle point form. In this paper we propose the use of Krylov-subspace solvers and suitable preconditioners for the saddle point systems. Numerical results illustrate the competitiveness of this approach. (C) 2012 Elsevier Inc. All rights reserved.