Zusammenfassung
Let L/K be a finite Galois extension of number fields with Galois group G. We use leading terms of Artin L-series at strictly negative integers to construct elements which we conjecture to lie in the annihilator ideal associated to the Galois action on the higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our conjecture coincides with a conjecture of Snaith and ...
Zusammenfassung
Let L/K be a finite Galois extension of number fields with Galois group G. We use leading terms of Artin L-series at strictly negative integers to construct elements which we conjecture to lie in the annihilator ideal associated to the Galois action on the higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our conjecture coincides with a conjecture of Snaith and thus generalizes also the well-known Coates-Sinnott conjecture. We show that our conjecture is implied by the appropriate special case of the equivariant Tamagawa number conjecture (ETNC) provided that the Quillen-Lichtenbaum conjecture holds. Moreover, we prove induction results for the ETNC in the case of Tate motives h(0) (Spec (L))(r), where r is a strictly negative integer. In-particular, this implies the ETNC for the pair (h(0)(Spec (L))(r), (sic), where L is totally real, r < 0 is odd and (sic) is a maximal order containing Z[1/2]G, and will also provide some evidence for our conjecture.