Ara, Dimitri ; Métayer, François
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Homology, Homotopy and Applications |
---|
Verlag: | INT PRESS BOSTON, INC |
---|
Ort der Veröffentlichung: | SOMERVILLE |
---|
Band: | 13 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Seitenbereich: | S. 121-142 |
---|
Datum: | 2011 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.4310/HHA.2011.v13.n1.a6 | DOI |
|
---|
Stichwörter / Keywords: | PARALLEL TRANSPORT; GERBES; HOLONOMY; connection; gerbe; 2-group; path 2-groupoid; parallel transport |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 65397 |
---|
Zusammenfassung
We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth 2-functors appear in several fields, namely as connections on (non-abelian) gerbes, as derivatives of ...
Zusammenfassung
We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth 2-functors appear in several fields, namely as connections on (non-abelian) gerbes, as derivatives of smooth functors and as critical points in BF theory. We demonstrate further that our dictionary provides a powerful tool to discuss the transgression of geometric objects to loop spaces.