Zusammenfassung
In this paper we define a p-adic analogue of the Borel regulator for the K-theory of p-adic fields. The van Est isomorphism in the construction of the classical Borel regulator is replaced by the Lazard isomorphism. The main result relates this p-adic regulator to the Bloch-Kato exponential and the Soule regulator. On the way we give a new description of the Lazard isomorphism for certain formal groups. We also show that the Soule regulator is induced by continuous and even analytic classes.