Startseite UR

A p-adic analogue of the Borel regulator and the Bloch–Kato exponential map

Huber, Annette ; Kings, Guido



Zusammenfassung

In this paper we define a p-adic analogue of the Borel regulator for the K-theory of p-adic fields. The van Est isomorphism in the construction of the classical Borel regulator is replaced by the Lazard isomorphism. The main result relates this p-adic regulator to the Bloch-Kato exponential and the Soule regulator. On the way we give a new description of the Lazard isomorphism for certain formal groups. We also show that the Soule regulator is induced by continuous and even analytic classes.


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner