Zusammenfassung
Scattering of otherwise ballistic electrons far from equilibrium is investigated in a cold two-dimensional electron system. The interaction between excited electrons and the degenerate Fermi liquid induces a positive charge in a nanoscale region which would be negatively charged for diffusive transport at local thermal equilibrium. In a three-terminal device we observe avalanche amplification of ...
Zusammenfassung
Scattering of otherwise ballistic electrons far from equilibrium is investigated in a cold two-dimensional electron system. The interaction between excited electrons and the degenerate Fermi liquid induces a positive charge in a nanoscale region which would be negatively charged for diffusive transport at local thermal equilibrium. In a three-terminal device we observe avalanche amplification of electrical current, resulting in a situation comparable to the Venturi effect in hydrodynamics. Numerical calculations using a random-phase approximation are in agreement with our data and suggest Coulomb interaction as the dominant scattering mechanism.