Finster, Felix ; Grotz, Andreas
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Mathematical Physics |
---|
Verlag: | AMER INST PHYSICS |
---|
Ort der Veröffentlichung: | MELVILLE |
---|
Band: | 51 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 7 |
---|
Datum: | 2010 |
---|
Institutionen: | Mathematik > Prof. Dr. Felix Finster |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1063/1.3449058 | DOI |
|
---|
Stichwörter / Keywords: | LIGHT-CONE EXPANSION; POLARIZED VACUUM; ELECTRONS; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 65989 |
---|
Zusammenfassung
The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not ...
Zusammenfassung
The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion. (C) 2010 American Institute of Physics. [doi:10.1063/1.3449058]