Startseite UR

Generic metrics and the mass endomorphism on spin three-manifolds

Hermann, Andreas



Zusammenfassung

Let (M, g) be a closed Riemannian spin manifold. The constant term in the expansion of the Green function for the Dirac operator at a fixed point p is an element of M is called the mass endomorphism in p associated to the metric g due to an analogy to the mass in the Yamabe problem. We show that the mass endomorphism of a generic metric on a three-dimensional spin manifold is nonzero. This implies a strict inequality which can be used to avoid bubbling-off phenomena in conformal spin geometry.


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner