Zusammenfassung
We introduce a new sharp interface model for the flow of two immiscible, viscous, incompressible fluids. In contrast to classical models for two-phase flows we prescribe an evolution law for the interfaces that takes diffusional effects into account. This leads to a coupled system of Navier-Stokes and Mullins-Sekerka type parts that coincides with the asymptotic limit of a diffuse interface ...
Zusammenfassung
We introduce a new sharp interface model for the flow of two immiscible, viscous, incompressible fluids. In contrast to classical models for two-phase flows we prescribe an evolution law for the interfaces that takes diffusional effects into account. This leads to a coupled system of Navier-Stokes and Mullins-Sekerka type parts that coincides with the asymptotic limit of a diffuse interface model. We prove the long-time existence of weak solutions, which is an open problem for the classical two-phase model. We show that the phase interfaces have in almost all points a generalized mean curvature. (C) 2009 Elsevier Masson SAS. All rights reserved.