Zusammenfassung
Let M he a compact spin manifold with a chosen spin structure. The Atiyah-Singer index theorem implies that for any Riemannian metric on M the dimension of the kernel of the Dirac operator is bounded from below by a topological quantity depending only on M and the spin structure. We show that for generic metrics on M this bound is attained. (C) 2008 Elsevier Inc. All rights reserved.
Nur für Besitzer und Autoren: Kontrollseite des Eintrags