Zusammenfassung
In recent years, a new generation of drugs has entered the pharmaceutical market. Some are more potent, but some are also more toxic and thus, therapeutical efficacy may be hindered, and severe side effects may be observed, unless they are delivered to their assigned place of effect. Those targets are not only certain cell types, moreover, in cancer therapy for example, some drugs even have to be ...
Zusammenfassung
In recent years, a new generation of drugs has entered the pharmaceutical market. Some are more potent, but some are also more toxic and thus, therapeutical efficacy may be hindered, and severe side effects may be observed, unless they are delivered to their assigned place of effect. Those targets are not only certain cell types, moreover, in cancer therapy for example, some drugs even have to be targeted to a specific cell organelle. Those targets in eukaryotic cells include among others endo- and lysosomes, mitochondria, the so-called power plants of the cells, and the biggest compartment with almost all the genetic information, the nucleus. In this review, we describe how the drugs can be directed to specific subcellular organelles and focus especially on synthetic polymers and nanoparticles as their carriers. Furthermore, we portray the progress that has been accomplished in recent years in the field of designing the carriers for efficient delivery into these target structures. Yet, we do not fail to mention the obstacles that still exist and are preventing polymeric and nanoparticular drug carrier systems from their broad application in humans. (c) 2007 Elsevier B.V. All rights reserved.