Zusammenfassung
In this paper, gain in GaInN quantum wells with 8% and 19% indium is analyzed using a comparison of a microscopic model to experimental data. It is shown that localized valence states can explain the characteristics of the gain spectra, in particular the broadening features at the red side of the spectrum. From an analysis of experimental and simulation data, the nonradiative current component is ...
Zusammenfassung
In this paper, gain in GaInN quantum wells with 8% and 19% indium is analyzed using a comparison of a microscopic model to experimental data. It is shown that localized valence states can explain the characteristics of the gain spectra, in particular the broadening features at the red side of the spectrum. From an analysis of experimental and simulation data, the nonradiative current component is extracted, and is shown to dominate the total current density at laser threshold operation. The increase of nonradiative current with density explains the drop in internal quantum efficiency in GaInN light-emitting diodes.