Zusammenfassung
We derive a weighted L-2-estimate of the Witten spinor in a complete Riemannian spin manifold (M-n, g) of non-negative scalar curvature which is asymptotically Schwarzschild. The interior geometry of M enters this estimate only via the lowest eigenvalue of the square of the Dirac operator on a conformal compactification of M.
Nur für Besitzer und Autoren: Kontrollseite des Eintrags

Altmetric
Altmetric