Zusammenfassung
When designing suitable biomaterials for tissue-engineering applications, biological and chemical parameters are frequently taken into account, while the equally important physical design variables have often been neglected. For a rational design of biomaterials, however, all variables influencing cell function and tissue morphogenesis have to be considered. This review will stress the ...
Zusammenfassung
When designing suitable biomaterials for tissue-engineering applications, biological and chemical parameters are frequently taken into account, while the equally important physical design variables have often been neglected. For a rational design of biomaterials, however, all variables influencing cell function and tissue morphogenesis have to be considered. This review will stress the development of crosslinked hydrogels and outline the impact of their physical properties on cell function and tissue morphogenesis. In the first part, the principles of cellular mechanosensitivity, as well as the influence of substrate mechanics on cell behavior, will be discussed. Afterwards, methods to characterize the mechanical properties of biomaterials will be presented. The subsequent chapters will address hydrogels that allow for the control of their physical qualities followed by a discussion of their use in tissue-engineering applications. (c) 2006 Elsevier Ltd. All rights reserved.