Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Archive for Mathematical Logic |
|---|
| Verlag: | SPRINGER |
|---|
| Ort der Veröffentlichung: | NEW YORK |
|---|
| Band: | 45 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 8 |
|---|
| Seitenbereich: | S. 983-1009 |
|---|
| Datum: | 2006 |
|---|
| Institutionen: | Mathematik |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1007/s00153-006-0022-2 | DOI |
|
|---|
| Stichwörter / Keywords: | ; |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 69689 |
|---|
Zusammenfassung
For an o-minimal expansion R of a real closed field and a set V of Th(R)-convex valuation rings, we construct a "pseudo completion" with respect to V. This is an elementary extension S of R generated by all completions of all the residue fields of the V epsilon V, when these completions are embedded into a big elementary extension of R. It is shown that S does not depend on the various embeddings ...
Zusammenfassung
For an o-minimal expansion R of a real closed field and a set V of Th(R)-convex valuation rings, we construct a "pseudo completion" with respect to V. This is an elementary extension S of R generated by all completions of all the residue fields of the V epsilon V, when these completions are embedded into a big elementary extension of R. It is shown that S does not depend on the various embeddings up to an R-isomorphism. For polynomially bounded R we can iterate the construction of the pseudo completion in order to get a "completion in stages" S of R with respect to V. S is the "smallest" extension of R such that all residue fields of the unique extensions of all V epsilon V to S are complete.