Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Archive for Mathematical Logic |
---|
Verlag: | SPRINGER |
---|
Ort der Veröffentlichung: | NEW YORK |
---|
Band: | 45 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 8 |
---|
Seitenbereich: | S. 983-1009 |
---|
Datum: | 2006 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1007/s00153-006-0022-2 | DOI |
|
---|
Stichwörter / Keywords: | ; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 69689 |
---|
Zusammenfassung
For an o-minimal expansion R of a real closed field and a set V of Th(R)-convex valuation rings, we construct a "pseudo completion" with respect to V. This is an elementary extension S of R generated by all completions of all the residue fields of the V epsilon V, when these completions are embedded into a big elementary extension of R. It is shown that S does not depend on the various embeddings ...
Zusammenfassung
For an o-minimal expansion R of a real closed field and a set V of Th(R)-convex valuation rings, we construct a "pseudo completion" with respect to V. This is an elementary extension S of R generated by all completions of all the residue fields of the V epsilon V, when these completions are embedded into a big elementary extension of R. It is shown that S does not depend on the various embeddings up to an R-isomorphism. For polynomially bounded R we can iterate the construction of the pseudo completion in order to get a "completion in stages" S of R with respect to V. S is the "smallest" extension of R such that all residue fields of the unique extensions of all V epsilon V to S are complete.