Finster, F. ; Kamran, N. ; Smoller, J. ; Yau, S.-T.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Communications in Mathematical Physics |
---|
Verlag: | SPRINGER |
---|
Ort der Veröffentlichung: | NEW YORK |
---|
Band: | 264 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 2 |
---|
Seitenbereich: | S. 465-503 |
---|
Datum: | 2006 |
---|
Institutionen: | Mathematik > Prof. Dr. Felix Finster |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1007/s00220-006-1525-8 | DOI |
|
---|
Stichwörter / Keywords: | BLACK-HOLE; STABILITY; PERTURBATIONS; SCHWARZSCHILD; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 69989 |
---|
Zusammenfassung
We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L-loc(infinity). The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable omega on the real ...
Zusammenfassung
We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L-loc(infinity). The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable omega on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.