Garcke, Harald
; Wieland, Sandra
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | SIAM Journal on Mathematical Analysis |
|---|
| Verlag: | SIAM PUBLICATIONS |
|---|
| Ort der Veröffentlichung: | PHILADELPHIA |
|---|
| Band: | 37 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 6 |
|---|
| Seitenbereich: | S. 2025-2048 |
|---|
| Datum: | 2006 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Harald Garcke |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1137/040617017 | DOI |
|
|---|
| Stichwörter / Keywords: | CAHN-HILLIARD EQUATION; LUBRICATION APPROXIMATION; PARABOLIC EQUATION; EXISTENCE; EVOLUTION; BEHAVIOR; partial differential equations; degenerate parabolic equation; thin liquid film; surfactant spreading; free surface; fluid interface |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 70282 |
|---|
Zusammenfassung
We consider the Navier-Stokes system for an incompressible fluid coupled with a convection-diffusion equation for surfactant molecules on the free surface. The lubrication approximation leads to a coupled system of parabolic equations, consisting of a degenerate fourth-order equation for the film height and a second-order equation for the surfactant concentration. A proof based on energy ...
Zusammenfassung
We consider the Navier-Stokes system for an incompressible fluid coupled with a convection-diffusion equation for surfactant molecules on the free surface. The lubrication approximation leads to a coupled system of parabolic equations, consisting of a degenerate fourth-order equation for the film height and a second-order equation for the surfactant concentration. A proof based on energy estimates shows the existence of global weak solutions which in addition fulfill an integral inequality (entropy condition) which ensures positivity properties for the solution.