Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Topology |
---|
Verlag: | PERGAMON-ELSEVIER SCIENCE LTD |
---|
Ort der Veröffentlichung: | OXFORD |
---|
Band: | 44 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
---|
Seitenbereich: | S. 661-687 |
---|
Datum: | 2005 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.top.2004.10.004 | DOI |
|
---|
Stichwörter / Keywords: | HOMOTOPY-INVARIANCE; QUADRATIC-FORMS; LOCALIZATION; SEQUENCE; COHOMOLOGY; SURGERY; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 70780 |
---|
Zusammenfassung
We show that hermitian K-theory and Witt groups are representable both in the unstable and in the stable A(1)-homotopy category of Morel and Voevodsky. In particular, Balmer Witt groups can be nicely expressed as homotopy groups of a topological space. The proof includes a motivic version of real Bott periodicity. Consequences include other new results related to projective spaces, blow ups and ...
Zusammenfassung
We show that hermitian K-theory and Witt groups are representable both in the unstable and in the stable A(1)-homotopy category of Morel and Voevodsky. In particular, Balmer Witt groups can be nicely expressed as homotopy groups of a topological space. The proof includes a motivic version of real Bott periodicity. Consequences include other new results related to projective spaces, blow ups and homotopy purity. The results became part of the proof of Morel's conjecture on certain A(1)-homotopy groups of spheres. (C) 2004 Elsevier Ltd. All rights reserved.