Lang, Michael ; Michalke, Wolfgang ; Kreitmeier, Stefan
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Computational Physics |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 185 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 2 |
---|
Seitenbereich: | S. 549-561 |
---|
Datum: | 2003 |
---|
Institutionen: | Physik > Institut für Experimentelle und Angewandte Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/S0021-9991(03)00003-2 | DOI |
|
---|
Stichwörter / Keywords: | SKEIN-TEMPLATE ALGORITHM; RUBBER ELASTICITY; TOPOLOGICAL CONSTRAINTS; STATISTICAL MECHANICS; VASSILIEV-INVARIANTS; COMPUTER EVALUATION; RING POLYMERS; GAUSS CODES; MODEL; POLYNOMIALS; trapped entanglement; polymer network; Gaussian linking number; Alexander-Polynomial; HOMFLY-Polynomial; Vassiliev; invariants; decomposition; cycles; algorithm |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 72392 |
---|
Zusammenfassung
This work reviews different standard methods to analyze trapped entanglements of polymer networks and discusses their advantages and drawbacks with respect to simplicity, computing time and accuracy of the results. Since this standard analysis is based on the pairwise test of closed cycles, two algorithms for the determination of these cycles are introduced and compared. The decomposition into ...
Zusammenfassung
This work reviews different standard methods to analyze trapped entanglements of polymer networks and discusses their advantages and drawbacks with respect to simplicity, computing time and accuracy of the results. Since this standard analysis is based on the pairwise test of closed cycles, two algorithms for the determination of these cycles are introduced and compared. The decomposition into meshes creates unsolved problems regarding the non-ambiguity and the completeness of the received results. Examples are given in order to show their effects and to start further discussion to receive more convenient methods. As one possible solution Vassiliev's invariants are discussed and an approximation method is introduced to correct the possible multiple counting of entanglements. (C) 2003 Elsevier Science B.V. All rights reserved.