Garcke, Harald
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Proceedings of the Royal Society of Edinburgh: Section A Mathematics |
---|
Verlag: | ROYAL SOC EDINBURGH |
---|
Ort der Veröffentlichung: | EDINBURGH |
---|
Band: | 133 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 2 |
---|
Seitenbereich: | S. 307-331 |
---|
Datum: | 2003 |
---|
Institutionen: | Mathematik > Prof. Dr. Harald Garcke |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1017/S0308210500002419 | DOI |
|
---|
Stichwörter / Keywords: | PHASE-SEPARATION; GINZBURG-LANDAU; SOLIDS; EQUATIONS; EVOLUTION; ALLOYS; MISFIT; MODEL; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 72560 |
---|
Zusammenfassung
Elastic effects can have a pronounced effect on the phase-separation process in solids. The classical Ginzburg Landau energy can be modified to account for such elastic interactions. The evolution of the system is then governed by diffusion equations for the concentrations of the alloy components and by a quasi-static equilibrium for the mechanical part. The resulting system of equations is ...
Zusammenfassung
Elastic effects can have a pronounced effect on the phase-separation process in solids. The classical Ginzburg Landau energy can be modified to account for such elastic interactions. The evolution of the system is then governed by diffusion equations for the concentrations of the alloy components and by a quasi-static equilibrium for the mechanical part. The resulting system of equations is elliptic-parabolic and can be understood as a generalization of the Cahn-Hilliard equation. In this paper we give a derivation of the system and prove an existence and uniqueness result for it.