DENK, R. ; MÖLLER, M. ; TRETTER, C.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of the London Mathematical Society |
---|
Verlag: | WILEY |
---|
Ort der Veröffentlichung: | HOBOKEN |
---|
Band: | 65 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 02 |
---|
Seitenbereich: | S. 483-492 |
---|
Datum: | 2002 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1112/S0024610701002964 | DOI |
|
---|
Stichwörter / Keywords: | ; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 73074 |
---|
Zusammenfassung
A partial differential operator associated with natural oscillations of an incompressible fluid in the neighbourhood of an elliptical flow is considered. The differentiation is only taken with respect to the angular variable, and thus the operator becomes a family of ordinary differential operators parametrized by the radial variable. It is shown that the spectra of these ordinary differential ...
Zusammenfassung
A partial differential operator associated with natural oscillations of an incompressible fluid in the neighbourhood of an elliptical flow is considered. The differentiation is only taken with respect to the angular variable, and thus the operator becomes a family of ordinary differential operators parametrized by the radial variable. It is shown that the spectra of these ordinary differential operators completely determine the spectrum of the given operator which turns out to have a kind of skeleton structure.