Denk, R. ; Mennicken, R. ; Volevich, L.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Integral Equations and Operator Theory |
---|
Verlag: | BIRKHAUSER VERLAG AG |
---|
Ort der Veröffentlichung: | BASEL |
---|
Band: | 39 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Seitenbereich: | S. 15-40 |
---|
Datum: | 2001 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1007/BF01192148 | DOI |
|
---|
Stichwörter / Keywords: | ; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 73914 |
---|
Zusammenfassung
In this paper parameter-dependent partial differential operators are investigated which satisfy the condition of N-ellipticity with parameter, an ellipticity condition formulated with the use of the Newton polygon. For boundary value problems with general boundary operators we define N-ellipticity including an analogue of the Shapiro-Lopatinskii condition. It is shown that the boundary value ...
Zusammenfassung
In this paper parameter-dependent partial differential operators are investigated which satisfy the condition of N-ellipticity with parameter, an ellipticity condition formulated with the use of the Newton polygon. For boundary value problems with general boundary operators we define N-ellipticity including an analogue of the Shapiro-Lopatinskii condition. It is shown that the boundary value problem is N-elliptic if and only if an a priori estimate with respect to certain parameter-dependent norms holds. These results are closely connected with singular perturbation theory and lead to uniform estimates for problems of Viskik-Lyusternik type containing a small parameter.