Altmann, Robert ; Kovács, Balázs ; Zimmer, Christoph
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | IMA Journal of Numerical Analysis |
|---|
| Verlag: | OXFORD UNIV PRESS |
|---|
| Ort der Veröffentlichung: | OXFORD |
|---|
| Band: | 43 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 2 |
|---|
| Seitenbereich: | S. 950-975 |
|---|
| Datum: | 2022 |
|---|
| Institutionen: | Mathematik |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1093/imanum/drac002 | DOI |
|
|---|
| Stichwörter / Keywords: | CAHN-HILLIARD EQUATION; DISCRETIZATION; dynamic boundary conditions; PDAE; splitting methods; bulk-surface splitting; parabolic equations |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 75324 |
|---|
Zusammenfassung
This paper studies bulk-surface splitting methods of first order for (semilinear) parabolic partial differential equations with dynamic boundary conditions. The proposed Lie splitting scheme is based on a reformulation of the problem as a coupled partial differential-algebraic equation system, i.e., the boundary conditions are considered as a second dynamic equation that is coupled to the bulk ...
Zusammenfassung
This paper studies bulk-surface splitting methods of first order for (semilinear) parabolic partial differential equations with dynamic boundary conditions. The proposed Lie splitting scheme is based on a reformulation of the problem as a coupled partial differential-algebraic equation system, i.e., the boundary conditions are considered as a second dynamic equation that is coupled to the bulk problem. The splitting approach is combined with bulk-surface finite elements and an implicit Euler discretization of the two subsystems. We prove first-order convergence of the resulting fully discrete scheme in the presence of a weak CFL condition of the form tau <= ch for some constant c > 0. The convergence is also illustrated numerically using dynamic boundary conditions of Allen-Cahn type.