Zusammenfassung
In this paper we study a recently derived mathematical model for nonlinear propagation of waves in the atmosphere, for which we establish the local well-posedness in the setting of classical solutions. This is achieved by formulating the model as a quasilinear parabolic evolution problem in an appropriate functional analytic framework and by using abstract theory for such problems. Moreover, for ...
Zusammenfassung
In this paper we study a recently derived mathematical model for nonlinear propagation of waves in the atmosphere, for which we establish the local well-posedness in the setting of classical solutions. This is achieved by formulating the model as a quasilinear parabolic evolution problem in an appropriate functional analytic framework and by using abstract theory for such problems. Moreover, for L2-initial data, we construct global weak solutions by employing a two-step approximation strategy based on a Galerkin scheme, where an equivalent formulation of the problem in terms of a new variable is used. Compared to the original model, the latter has the advantage that the L2-norm is a Liapunov functional.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).