Startseite UR

Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies

Aja-Fernández, Santiago ; Martín-Martín, Carmen ; Planchuelo-Gómez, Álvaro ; Faiyaz, Abrar ; Uddin, Md Nasir ; Schifitto, Giovanni ; Tiwari, Abhishek ; Shigwan, Saurabh J. ; Kumar Singh, Rajeev ; Zheng, Tianshu ; Cao, Zuozhen ; Wu, Dan ; Blumberg, Stefano B. ; Sen, Snigdha ; Goodwin-Allcock, Tobias ; Slator, Paddy J. ; Yigit Avci, Mehmet ; Li, Zihan ; Bilgic, Berkin ; Tian, Qiyuan ; Wang, Xinyi ; Tang, Zihao ; Cabezas, Mariano ; Rauland, Amelie ; Merhof, Dorit ; Manzano Maria, Renata ; Campos, Vinícius Paraníba ; Santini, Tales ; da Costa Vieira, Marcelo Andrade ; HashemizadehKolowri, SeyyedKazem ; DiBella, Edward ; Peng, Chenxu ; Shen, Zhimin ; Chen, Zan ; Ullah, Irfan ; Mani, Merry ; Abdolmotalleby, Hesam ; Eckstrom, Samuel ; Baete, Steven H. ; Filipiak, Patryk ; Dong, Tanxin ; Fan, Qiuyun ; de Luis-García, Rodrigo ; Tristán-Vega, Antonio ; Pieciak, Tomasz



Zusammenfassung

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner