Startseite UR
![]() | Eine Stufe nach oben |
Cvitkovich, Lukas, Zollner, Klaus
und Fabian, Jaroslav
(2025)
Machine Learning Prediction of Magnetic Proximity Effect in van der Waals Heterostructures: From Atoms to Moiré.
arxiv, 2508.12406.
, Schneidt, Veronika, Hemaid, Mustafa, Watanabe, Kenji, Taniguchi, Takashi, Schwartz, Rico, Fabian, Jaroslav
und Korn, Tobias
(2025)
Effect of spin-dependent tunneling in a MoSe₂/Cr₂Ge₂Te₆ van der Waals heterostructure on exciton and trion emission.
Physical Review Applied 24, 034008.
Volltext nicht vorhanden.
Bärenfänger, Jan
, Zollner, Klaus
, Cvitkovich, Lukas, Watanabe, Kenji, Taniguchi, Takashi, Hartl, Stefan, Fabian, Jaroslav
, Eroms, Jonathan
, Weiss, Dieter und Ciorga, Mariusz
(2025)
Highly efficient lateral spin valve device based on graphene/hBN/Fe3GeTe2.
2D Materials 12 (4), 045008.
Pasquale, Gabriele, de Faria Junior, Paulo Eduardo
, Feng, Shun, Collette, Eloi, Watanabe, Kenji
, Taniguchi, Takashi, Fabian, Jaroslav
und Kis, Andras
(2025)
Spin polarization detection via chirality-induced tunneling currents in indium selenide.
Nature Materials 24, S. 212-218.
Palekar, C. C., Faria Junior, Paulo E.
, Rosa, Bárbara, Sousa, Federico B., Malard, Leandro M., Fabian, Jaroslav
und Reitzenstein, Stephan
(2024)
Amplification of interlayer exciton emission in twisted WSe2/WSe2/MoSe2 heterotrilayers.
npj 2D Materials and Applications 8, S. 49.
und J. Ferreira, Gerson
(2024)
Codebase release 0.0 for DFT2kp.
[Software]
Volltext nicht vorhanden.
Cassiano, João Victor V., de Lelis Araújo, Augusto, Faria Junior, Paulo E.
und Ferreira, Gerson J.
(2024)
DFT2kp: Effective kp models from ab-initio data.
SciPost Physics Codebases (25).
Graml, Maximilian
, Zollner, Klaus
, Hernangómez-Pérez, Daniel, Faria Junior, Paulo E.
und Wilhelm, Jan
(2024)
Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers.
Journal of Chemical Theory and Computation 20 (5), S. 2202-2208.
Publikationsserver
Publizieren: oa@ur.de
0941 943 -4239 oder -69394
Dissertationen: dissertationen@ur.de
0941 943 -3904
Forschungsdaten: datahub@ur.de
0941 943 -5707