Go to content
UR Home

Cohomological invariants for higher degree forms

URN to cite this document: urn:nbn:de:bvb:355-opus-2594

Rupprecht, Christopher (2003) Cohomological invariants for higher degree forms. PhD, Universität Regensburg.

License: Publishing license for publications excluding print on demand
Download (458kB)

Abstract (English)

Let $r>2$ be an integer and let $K$ be a field in which $r!$ is invertible. An $r$-form over $K$ is an equivalence class of regular finite-dimensional $K$-multilinear forms of degree $r$. The operation of direct sums allows the definition of a Witt Grothendieck group of $r$-forms over $K$. It becomes a ring with the multiplication induced by the tensor product of $r$-forms. The properties of the ...


Translation of the abstract (German)

Sei $r >2$ eine ganze Zahl und sei $K$ ein Körper, in dem $r!$ invertierbar ist. Ein $r$-Form über $K$ ist eine Äquivalenzklasse regulärer endlich-dimensionaler $K$-multilinearer Formen vom Grad $r$ über $K$. Die Verknüpfung durch direkte Summen liefert die Definition einer Witt Grothendieck Gruppe der $r$-Formen über $K$, und mit der Multiplikation durch das Tensorprodukt bildet diese einen ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:10 July 2003
Referee:Uwe (Prof. Dr.) Jannsen
Date of exam:2 May 2003
Institutions:Mathematics > Prof. Dr. Uwe Jannsen
Keywords:Homogenes Polynom , Diskriminante , Witt-Gruppen von Ringen , Forms of degree higher than 2 , Discriminants , Witt Groups of rings
Dewey Decimal Classification:500 Science > 510 Mathematics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Deposited on:26 Oct 2009 13:08
Last modified:13 Mar 2014 11:15
Item ID:10107
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons