Bertolin, Cristiana
(2003)
*Motivic Galois theory for motives of level ≤ 1.*
arXiv.

| PDF Download (213kB) |

Other URL: http://arxiv.org/PS_cache/math/pdf/0309/0309379v2.pdf

## Abstract

Let T be a Tannakian category over a field k of characteristic 0 and \pi(T) its fundamental group. In this paper we prove that there is a bijection between the otimes-equivalence classes of Tannakian subcategories of T and the normal affine group sub-T-schemes of \pi(T). We apply this result to the Tannakian category T_1(k) generated by motives of niveau \leq 1 defined over k, whose fundamental ...

## Export bibliographical data

Item type: | Article | ||||
---|---|---|---|---|---|

Date: | 2003 | ||||

Institutions: | Mathematics > Prof. Dr. Uwe Jannsen | ||||

Identification Number: |
| ||||

Classification: |
| ||||

Keywords: | Fundamental group of Tannakian categories, Artin motives, 1- motives, motivic Galois groups | ||||

Dewey Decimal Classification: | 500 Science > 510 Mathematics | ||||

Status: | Published | ||||

Refereed: | Yes, this version has been refereed | ||||

Created at the University of Regensburg: | Yes | ||||

Deposited on: | 27 Nov 2009 07:04 | ||||

Last modified: | 13 Mar 2014 12:08 | ||||

Item ID: | 10991 |