Go to content
UR Home

Lokale Schnitttheorie an nicht-archimedischen Stellen für Produkte semistabiler Kurven

Kolb, Johannes (2013) Lokale Schnitttheorie an nicht-archimedischen Stellen für Produkte semistabiler Kurven. PhD, Universität Regensburg.

[img]
Preview
License: Publishing license for publications including print on demand
PDF
Download (1MB)
Date of publication of this fulltext: 11 Jul 2013 14:09

Abstract (German)

Diese Arbeit verallgemeinert eine Formel von Shou-Wu Zhang, die lokale arithmetische Schnittzahlen von Cartierdivisoren mit Träger in der speziellen Faser einer Desingularisierung eines Produktes semistabiler arithmetischer Flächen mittels elementarer Analysis beschreibt.

Translation of the abstract (English)

This work generalizes a formula of Shou-Wu Zhang, which describes arithmetic intersection numbers of Cartier divisors with support in the special fibre of a desingularization of a product of semi-stable arithmetic surfaces using elementary analysis.


Export bibliographical data



Item type:Thesis of the University of Regensburg (PhD)
Date:11 July 2013
Referee:Prof. Dr. Klaus Künnemann
Date of exam:1 March 2013
Institutions:Mathematics > Prof. Dr. Klaus Künnemann
Related URLs:
URLURL Type
http://epub.uni-regensburg.de/28461Supplementary Material
Keywords:Schnitttheorie, arithmetische Geometrie, Arakelov-Geometrie, semistabile Schemata, semistabile Kurven
Dewey Decimal Classification:500 Science > 510 Mathematics
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:28447
Owner only: item control page

Downloads

Downloads per month over past year

  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons