Zusammenfassung
Nontargeted metabolite fingerprinting is increasingly applied to biomedical classification. The choice of classification algorithm may have a considerable impact on outcome. In this study, employing nested cross-validation for assessing predictive performance, six binary classification algorithms in combination with different strategies for data-driven feature selection were systematically ...
Zusammenfassung
Nontargeted metabolite fingerprinting is increasingly applied to biomedical classification. The choice of classification algorithm may have a considerable impact on outcome. In this study, employing nested cross-validation for assessing predictive performance, six binary classification algorithms in combination with different strategies for data-driven feature selection were systematically compared on five data sets of urine, serum, plasma, and milk one-dimensional fingerprints obtained by proton nuclear magnetic resonance (NMR) spectroscopy. Support Vector Machines and Random Forests combined with t-score-based feature filtering performed well on most data sets, whereas the performance of the other tested methods varied between data sets.