Go to content
UR Home

Universal geometrizations and the intrinsic eta-invariant

Völkl, Michael (2015) Universal geometrizations and the intrinsic eta-invariant. PhD, Universität Regensburg.

License: Publishing license for publications including print on demand
Download (1MB)
Date of publication of this fulltext: 02 Jun 2015 10:41

Abstract (English)

Bordism theory is a central object in algebraic topology. By now quite a few bordism invariants are known, e.g., Adams e-invariant for (stably) framed bordism, rho-invariants for equivariant bordism and Kreck-Stolz invariants for some versions of Spin^c-bordism. Bunke recently gave a unified construction for the mentioned bordism invariants, namely he defined the universal eta-invariant. This ...


Translation of the abstract (German)

Bordismustheorie ist ein zentrales Objekt in der algebraischen Topologie. Heute sind einige Bordismusinvarianten bekannt, z.B. Adams e-Invariante für (stabil) gerahmten Bordismus, rho-Invarianten für equivarianten Bordismus and Kreck-Stolz-Invarianten für verschiedene Versionen von Spin^c-Bordismus. Bunke gab kürzlich eine vereinheitlichte Konstruktion der genannten Bordismus-Invarianten, und ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:1 June 2015
Referee:Prof. Dr. Ulrich Bunke
Date of exam:8 May 2015
Institutions:Mathematics > Prof. Dr. Ulrich Bunke
Keywords:bordism, geometrizations, eta-invariant
Dewey Decimal Classification:500 Science > 510 Mathematics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:31888
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons