Zusammenfassung
Here, we report on the long-term stability of changes in behavior and brain activity following perceptual learning of conjunctions of simple motion features. Participants were trained for 3 weeks on a visual search task involving the detection of a dot moving in a "v"-shaped target trajectory among inverted "v"-shaped distractor trajectories. The first and last training sessions were carried out ...
Zusammenfassung
Here, we report on the long-term stability of changes in behavior and brain activity following perceptual learning of conjunctions of simple motion features. Participants were trained for 3 weeks on a visual search task involving the detection of a dot moving in a "v"-shaped target trajectory among inverted "v"-shaped distractor trajectories. The first and last training sessions were carried out during functional magnetic resonance imaging (fMRI). Learning stability was again examined behaviorally and using fMRI 3 years after the end of training. Results show that acquired behavioral improvements were remarkably stable over time and that these changes were specific to trained target and distractor trajectories. A similar pattern was observed on the neuronal level, when the representation of target and distractor stimuli was examined in early retinotopic visual cortex (V1-V3): training enhanced activity for the target relative to the surrounding distractors in the search array and this enhancement persisted after 3 years. However, exchanging target and distractor trajectories abolished both neuronal and behavioral effects, suggesting that training-induced changes in stimulus representation are specific to trained stimulus identities.