Zusammenfassung
Verbal and figural fluency are related to executive functions (EFs), but the extent to which they benefit from executive resources and their respective cortical representations is not clear. Moreover, different brain areas and cognitive functions are involved in fluency processing. This study investigated effects of modulation of cortical excitability in the left dorsolateral prefrontal cortex ...
Zusammenfassung
Verbal and figural fluency are related to executive functions (EFs), but the extent to which they benefit from executive resources and their respective cortical representations is not clear. Moreover, different brain areas and cognitive functions are involved in fluency processing. This study investigated effects of modulation of cortical excitability in the left dorsolateral prefrontal cortex (l-DLPFC), left temporal area and right posterior parietal cortex (r-PPC) with transcranial direct current stimulation (tDCS), on verbal and figural fluency. Fifteen healthy adult participants received anodal l-DLPFC (F3), anodal left temporal (T3), anodal r-PPC (P4) and sham tDCS (15 min, 1.5 mA). After five minutes of stimulation, participants underwent the verbal fluency (i.e., semantic and phonemic fluency tasks) and figural fluency tasks. Participants significantly generated more words with phonemic cues during anodal l-DLPFC tDCS and more words with semantic cues during both anodal left temporal and anodal l-DLPFC tDCS. In contrast, they generated more unique figures under anodal r-PPC and anodal l-DLPFC tDCS. Our results implicate that prefrontal regions and EFs are shared anatomical correlates and cognitive processes relevant for both, verbal and figural fluency (supramodal contribution of DLPFC activation), whereas r-PPC and left temporal cortex are more specifically involved in figural and semantic fluency (modality-specific contribution).