Abstract
BX1 from Zea mays (zmBX1) is an enzyme of plant secondary metabolism that generates indole for the synthesis of plant defensins. It is a homologue of the tryptophan synthase alpha-subunit, TrpA. Whereas TrpA itself is a monomer in solution, zmBX1 is dimeric, confirmed in our work by native MS. Using cross-linking and mutagenesis, we identified the physiological dimerization interface of zmBX1. We ...
Abstract
BX1 from Zea mays (zmBX1) is an enzyme of plant secondary metabolism that generates indole for the synthesis of plant defensins. It is a homologue of the tryptophan synthase alpha-subunit, TrpA. Whereas TrpA itself is a monomer in solution, zmBX1 is dimeric, confirmed in our work by native MS. Using cross-linking and mutagenesis, we identified the physiological dimerization interface of zmBX1. We found that homodimerization has only minor effects on catalysis and stability. A comparison of the zmBX1 zmBX1 homodimer and zmTrpA-zmTrpB heterodimer interfaces suggest that homodimerization in zmBX1 might, at an early point in evolution, have served as a mechanism to exclude the interaction with the tryptophan synthase beta-subunit (zmTrpB), marking its transition from primary to secondary metabolism.