Lizenz: Creative Commons Namensnennung 4.0 International PDF - Veröffentlichte Version (3MB) |
- URN zum Zitieren dieses Dokuments:
- urn:nbn:de:bvb:355-epub-530999
- DOI zum Zitieren dieses Dokuments:
- 10.5283/epub.53099
Zusammenfassung
Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the Department of ...
Nur für Besitzer und Autoren: Kontrollseite des Eintrags