Lizenz: Creative Commons Namensnennung-NichtKommerziell-KeineBearbeitung 4.0 International PDF - Veröffentlichte Version (2MB) |
- URN zum Zitieren dieses Dokuments:
- urn:nbn:de:bvb:355-epub-537371
- DOI zum Zitieren dieses Dokuments:
- 10.5283/epub.53737
Zusammenfassung
Background Deep learning tasks, which require large numbers of images, are widely applied in digital pathology. This poses challenges especially for supervised tasks since manual image annotation is an expensive and laborious process. This situation deteriorates even more in the case of a large variability of images. Coping with this problem requires methods such as image augmentation and ...
Nur für Besitzer und Autoren: Kontrollseite des Eintrags