Startseite UR

Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy

URN zum Zitieren dieses Dokuments:
urn:nbn:de:bvb:355-epub-537371
DOI zum Zitieren dieses Dokuments:
10.5283/epub.53737
Berijanian, Maryam ; Schaadt, Nadine S. ; Huang, Boqiang ; Lotz, Johannes ; Feuerhake, Friedrich ; Merhof, Dorit
Veröffentlichungsdatum dieses Volltextes: 13 Feb 2023 17:22



Zusammenfassung

Background Deep learning tasks, which require large numbers of images, are widely applied in digital pathology. This poses challenges especially for supervised tasks since manual image annotation is an expensive and laborious process. This situation deteriorates even more in the case of a large variability of images. Coping with this problem requires methods such as image augmentation and ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner