Go to content
UR Home

Fractional‐order operators on nonsmooth domains

URN to cite this document:
urn:nbn:de:bvb:355-epub-540375
DOI to cite this document:
10.5283/epub.54037
Abels, Helmut ; Grubb, Gerd
Date of publication of this fulltext: 06 Apr 2023 09:18

This publication is part of the DEAL contract with Wiley.


Abstract

The fractional Laplacian (-Delta)a$(-\Delta )<^>a$, a is an element of(0,1)$a\in (0,1)$, and its generalizations to variable-coefficient 2a$2a$-order pseudodifferential operators P$P$, are studied in Lq$L_q$-Sobolev spaces of Bessel-potential type Hqs$H<^>s_q$. For a bounded open set omega subset of Rn$\Omega \subset \mathbb {R}<^>n$, consider the homogeneous Dirichlet problem: Pu=f$Pu =f$ in ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons