Zusammenfassung
Internal tandem duplications (ITDs) in the FMS-like tyrosine kinase-3 (FLT3) are causally linked to acute myeloid leukemia (AML) with poor prognosis. Available FLT3 inhibitors (FLT3i) preferentially target inactive or active conformations of FLT3. Moreover, they co-target kinases for normal hematopoiesis, are vulnerable to therapy-associated tyrosine kinase domain (TKD) FLT3 mutants, or lack low ...
Zusammenfassung
Internal tandem duplications (ITDs) in the FMS-like tyrosine kinase-3 (FLT3) are causally linked to acute myeloid leukemia (AML) with poor prognosis. Available FLT3 inhibitors (FLT3i) preferentially target inactive or active conformations of FLT3. Moreover, they co-target kinases for normal hematopoiesis, are vulnerable to therapy-associated tyrosine kinase domain (TKD) FLT3 mutants, or lack low nanomolar activity. We show that the tyrosine kinase inhibitor marbotinib suppresses the phosphorylation of FLT3-ITD and the growth of permanent and primary AML cells with FLT3-ITD. This also applies to leukemic cells carrying FLT3-ITD/TKD mutants that confer resistance to clinically used FLT3i. Marbotinib shows high selectivity for FLT3 and alters signaling, reminiscent of genetic elimination of FLT3-ITD. Molecular docking shows that marbotinib fits in opposite orientations into inactive and active conformations of FLT3. The water-soluble marbotinib-carbamate significantly prolongs survival of mice with FLT3-driven leukemia. Marbotinib is a nanomolar next -generation FLT3i that represents a hybrid inhibitory principle.